Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data
نویسندگان
چکیده
a r t i c l e i n f o In this study, we used the remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS), meteorological and eddy flux data and an artificial neural networks (ANNs) technique to develop a daily evapotranspiration (ET) product for the period of 2004–2005 for the conterminous U.S. We then estimated and analyzed the regional water-use efficiency (WUE) based on the developed ET and MODIS gross primary production (GPP) for the region. We first trained the ANNs to predict evapotranspiration fraction (EF) based on the data at 28 AmeriFlux sites between 2003 and 2005. Five remotely-sensed variables including land surface temperature (LST), normalized difference vegetation index (NDVI), normalized difference water index (NDWI), leaf area index (LAI) and photosynthetically active radiation (PAR) and ground-measured air temperature and wind velocity were used. The daily ET was calculated by multiplying net radiation flux derived from remote sensing products with EF. We then evaluated the model performance by comparing modeled ET with the data at 24 AmeriFlux sites in 2006. We found that the ANNs predicted daily ET well (R 2 = 0.52–0.86). The ANNs were applied to predict the spatial and temporal distributions of daily ET for the conterminous U.S. in 2004 and 2005. The ecosystem WUE for the conterminous U.S. from 2004 to 2005 was calculated using MODIS GPP products (MOD17) and the estimated ET. We found that all ecosystems' WUE-drought relationships showed a two-stage pattern. Specifically, WUE increased when the intensity of drought was moderate; WUE tended to decrease under severe drought. These findings are consistent with the observations that WUE does not monotonously increase in response to water stress. Our study suggests a new water-use efficiency mechanism should be considered in ecosystem modeling. In addition, this study provides a high spatial and temporal resolution ET dataset, an important product for climate change and hydrological cycling studies for the MODIS era.
منابع مشابه
Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data
Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) E...
متن کاملEvapotranspiration models compared on a Sierra Nevada forest ecosystem
Evapotranspiration, a major component in terrestrial water balance and net primary productivity models, is difficult to measure and predict. This study compared five models of potential evapotranspiration (PET) applied to a ponderosa pine forest ecosystem at an AmeriFlux site in Northern California. The AmeriFlux sites are research forests across the United States, Canada, Brazil, and Costa Ric...
متن کاملEvaluating Ecohydrological Impacts of Vegetation Activities on Climatological Perspectives Using MODIS Gross Primary Productivity and Evapotranspiration Products at Korean Regional Flux Network Site
Accurate assessments of spatio-temporal variations in gross primary productivity (GPP), evapotranspiration (ET), and water use efficiency (WUE) play a crucial role in the evaluation of carbon and water balance as well as have considerable effects on climate change. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) products were used to quantify the mean annual GPP and ET at K...
متن کاملEvaluation of Water Use Efficiency Derived from MODIS Products against Eddy Variance Measurements in China
Water use efficiency (WUE) is a useful indicator to illustrate the interaction of carbon and water cycles in terrestrial ecosystems. MODIS gross primary production (GPP) and evapotranspiration (ET) products have been used to analyze the spatial and temporal patterns of WUE and their relationships with environmental factors at regional and global scales. Although MODIS GPP and ET products have b...
متن کاملDeveloping a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through Support Vector Machine approach
Remote sensing is a potentially powerful technology with which to extrapolate eddy covariance-based gross primary production (GPP) to continental scales. In support of this concept, we used meteorological and flux data from the AmeriFlux network and Support Vector Machine (SVM), an inductive machine learning technique, to develop and apply a predictive GPP model for the conterminous U.S. In the...
متن کامل